• Conversion of waste into wealth in chemical recycling of polymers: Hydrolytic depolymerization of polyethylene terephthalate into terephthalic acid and ethylene glycol using phase transfer catalysis, 2023, https://www.sciencedirect.com/science/article/abs/pii/S095965262302470
• HYDROLYSIS OF POLY-ETHYLENE TEREPHTHALATE WASTE USING HIGH PRESSURE AUTOCLAVE: A CHEMICAL RECYCLING, DOI: 10.9734/bpi/pcsr/v3/7290F,
https://pgcollege.kces.in/pdf/research/Dr_V_S_Zope_21_22.pdf |
• Ilyina, E. V., Gerus, Y. Y., Cherepanova, S. V., & Bedilo, A. F. (2021). Synthesis of C12A7 calcium aluminate aerogels. Materials Letters, 293, 129699. https://www.sciencedirect.com/science/article/abs/pii/S0167577X21003955?via%3Dihub
• Ang, T. N., Young, B. R., Burrell, R., Taylor, M., Aroua, M. K., & Baroutian, S. (2021). Oxidative hydrothermal surface modification of activated carbon for sevoflurane removal. Chemosphere, 264, 128535. https://linkinghub.elsevier.com/retrieve/pii/S0045653520327302
• A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions.https://doi.org/10.1016/j.jcou.2022.102236
• Response surface optimization and artificial neural network modeling of biodiesel production from crude mahua (Madhuca indica) oil under supercritical ethanol conditions using CO2 as co-solvent. 10.1039/C5RA11911A
• The Oxidative Cleavage of 9,10‐Dihydroxystearic Triglyceride with Oxygen and Cu Oxide‐based Heterogeneous Catalysts —Vassoi—2021—ChemSusChem—Wiley Online Library. (n.d.). Retrieved October 19, 2022, from https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.202100322
• Green Fabrication of Supported Platinum Nanoparticles by Supercritical CO2 Deposition, Materials. 2018; 11(12):2587. https://doi.org/10.3390/ma11122587
https://www.mdpi.com/1996-1944/11/12/2587 |
• Anthraper, D., McLaren, J., Baroutian, S., Munir, M. T., & Young, B. R. (2018). Hydrothermal deconstruction of municipal solid waste for solid reduction and value production. Journal of Cleaner Production, 201, 812–819. https://www.sciencedirect.com/science/article/abs/pii/S0959652618324582?via%3Dihub
• Gawade, A. B., Nakhate, A. V., & Yadav, G. D. (2018). Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst. Catalysis Today, 309, 119–125. https://www.sciencedirect.com/science/article/abs/pii/S0920586117305722?via%3Dihub
• Gupta, S. S. R., & Kantam, M. L. (2018). Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catalysis Today, 309, 189–194. https://www.sciencedirect.com/science/article/abs/pii/S0920586117305291?via%3Dihub
• Kassaye, S., Pant, K. K., & Jain, S. (2017). Hydrolysis of cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreament steps. Renewable Energy, 104, 177–184. https://www.sciencedirect.com/science/article/abs/pii/S0960148116310874?via%3Dihub
• Green Fabrication of Supported Platinum Nanoparticles by Supercritical CO2 Deposition, 2018, https://www.mdpi.com/1996-1944/11/12/2587
• Sassykova, L. and Aubakirov, Y., 2018. Catalytic hydrogenation of gasoline fractions under elevated pressure. Chiang Mai Journal of Science, 45(1), pp.474-483.
• Molleti, J., & Yadav, G. D. (2017). Green Synthesis of Veratraldehyde Using Potassium Promoted Lanthanum–Magnesium Mixed Oxide Catalyst. Organic Process Research & Development, 21(7), 1012–1020. https://pubs.acs.org/doi/10.1021/acs.oprd.7b00127
• Gaikwad, Namrata D., and Parag R. Gogate. 2015. “Synthesis and Application of Carbon Based Heterogeneous Catalysts for Ultrasound Assisted Biodiesel Production.” Green Processing and Synthesis 4(1):17–30. doi: 10.1515/gps-2014-0079.
• Huang, Xiaoming, Tamás I. Korányi, Michael D. Boot, and Emiel J. M. Hensen. 2015. “Ethanol as Capping Agent and Formaldehyde Scavenger for Efficient Depolymerization of Lignin to Aromatics.” Green Chemistry 17(11):4941–50. doi: 10.1039/C5GC01120E.
• Yadav, G. D., & Sharma, R. V. (2014). Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Applied Catalysis B: Environmental, 147, 293–301. https://www.sciencedirect.com/science/article/abs/pii/S0926337313005699?via%3Dihub
• Yadav, G. D., & Mewada, R. K. (2013). Novelties of azobenzene synthesis via selective hydrogenation of nitrobenzene over nano-fibrous Ag-OMS-2 – Mechanism and kinetics. Chemical Engineering Journal, 221, 500–511.
https://www.sciencedirect.com/science/article/abs/pii/S1385894713001204?via%3Dihub
• Bhatte, K. D., & Bhanage, B. M. (2013). Synthesis of cobalt oxide nanowires using a glycerol thermal route. Materials Letters, 96, 60–62. https://www.sciencedirect.com/science/article/abs/pii/S0167577X13000293?via%3Dihub
• Yadav, G. D., & Lawate, Y. S. (2013). Hydrogenation of Styrene Oxide to 2-Phenyl Ethanol over Polyurea Microencapsulated Mono- and Bimetallic Nanocatalysts: Activity, Selectivity, and Kinetic Modeling. Industrial & Engineering Chemistry Research, 52(11), 4027–4039. https://pubs.acs.org/doi/10.1021/ie302587j
• Bhatte, K. D., Deshmukh, K. M., Patil, Y. P., Sawant, D. N., Fujita, S.-I., Arai, M., & Bhanage, B. M. (2012). Synthesis of powdered silver nanoparticles using hydrogen in aqueous medium. Particuology, 10(1), 140–143. https://www.sciencedirect.com/science/article/abs/pii/S1674200111001738?via%3Dihub
• Yadav, G. D., & Lawate, Y. S. (2011). Selective hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea supported Pd–Cu catalyst in supercritical carbon dioxide. The Journal of Supercritical Fluids, 59, 78–86. https://www.sciencedirect.com/science/article/abs/pii/S0896844611003160?via%3Dihub
• Baiju, K. V., Shukla, S., Biju, S., Reddy, M. L. P., & Warrier, K. G. K. (2009). Hydrothermal processing of dye-adsorbing one-dimensional hydrogen titanate. Materials Letters, 63(11), 923–926. https://www.sciencedirect.com/science/article/abs/pii/S0167577X09000706?via%3Dihub
• Design of a novel dual function membrane microreactor for liquid-liquid-liquid phase transfer catalysed reaction: selective synthesis of 1-naphthyl glycidyl ether, 2021, https://doi.org/10.1039/D1RE00030F
• Design and development of Novel Continuous Flow Stirred Multiphase Reactor: Liquid-Liquid-Liquid Phase Transfer Catalysed Synthesis of Guaiacol Glycidyl Ether, 2020, https://www.mdpi.com/2227-9717/8/10/1271, https://doi.org/10.3390/pr8101271
• A multistep continuous flow synthesis of cystic fibrosis medicine Ivacaftor, N. Vasudevan, M. K. Sharma, D. S. Reddy and A. Kulkarni, React. Chem. Eng., 2018,
https://doi.org/10.1039/C8RE00025E
• Liquid-Liquid Extraction for the Separation of Co(II) from Ni(II) with Cyanex 272 Using A Pilot Scale Re-entrance Flow Microreactor, Chemical Engineering Journal (2017), L. Zhang, V. Hessel, J. Peng https://www.sciencedirect.com/science/article/abs/pii/S1385894717315462?via%3Dihub
• Microreactor-based continuous process for controlled synthesis of Poly-Methyl-Methacrylate-Methacrylic acid (PMMA) nanoparticles, Journal of Materials Chemistry B, 2017, DOI: 10.1039/C7TB00560A.
https://doi.org/10.1039/C7TB00560A
• Selectivity engineering of the diazotization reaction in a continuous flow reactor, DOI: 10.1039/C5RE00056D, Citation: React. Chem. Eng., 2016, 1, 387-396.
https://doi.org/10.1039/C5RE00056D
• CFD Simulations of Axial Mixing in AMaR Micro-mixer cum reactor, DOI:10.1002/aic.13954 https://www.researchgate.net/profile/Chirag-Khalde-2/publication/272239115_CFD_Simulations_of_Axial_Mixing_in_AMaR_Micro-mixer_cum_reactor/links/54c0e1e30cf21674cea04f28/CFD-Simulations-of-Axial-Mixing-in-AMaR-Micro-mixer-cum-reactor.pdf
• CRE for MAGIC (modular, agile, intensified & continuous) processes, 2015, Chemical Engineering Journal, https://www.sciencedirect.com/science/article/abs/pii/S1385894714016623?via%3Dihub
• Khalde, C.M., Kulkarni, A.A. and Ranade, V.V., 2015. CFD simulations of axial mixing in Amar micro-mixer cum reactor. channels, 59(5), pp.1814-1827.
• Continuous flow meerwein arylation J. Flow Chem. 2014, 4(4), 211-216. http://www.akademiai.com/doi/abs/10.1556/JFC-D-14-00023
• Continuous flow synthesis of regioregular poly (3-hexythiophene) Ultrafast polymerization with high throughput and low polydispersity index J. Flow Chem. 2014, 4(4), 206-210. DOI:10.1556/JFC-D-14-00009
• 3D Flow Reactors: Flow, Hydrodynamics and Performance Ind. Eng. Chem. Res., 2014, 53 (5), pp 1916–1923. https://pubs.acs.org/doi/10.1021/ie402311y
• Continuous flow nitration of o-Xylene: Effect of nitrating agent and feasibility of tubular reactors for scale-up https://doi.org/10.1021/acs.oprd.5b00064.
• Discontinuous two step flow synthesis of m-aminoacetophenone; Green Process Synthesis; 3(4): 279-285. August 2014, DOI: 10.1515/9PS - 2014 - 0043. DOI:10.1515/gps-2014-0043
• Continuous flow nitration in miniaturized devices, Beilstein J. Org. Chem., 405-424, DOI: 10.3762/bjoc.10.38, 2014.10. https://www.beilstein-journals.org/bjoc/articles/10/38